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Brane Cosmology, Varying Speed of Light
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We summarize the approach to brane cosmology known as “mirage cosmology” and
use it to determine the Friedmann equation on a 3-brane embedded in different bulk
spacetimes all with one or more extra dimensions. Usually, when there is more than
one extra dimension the junction conditions, central to the usual brane world scenarios,
are difficult to apply. This problem does not arise in mirage cosmology because the
brane is treated as a “test particle” in the background spacetime. We discuss in detail
the dynamics of a brane embedded in two specific 10D bulk spacetimes, namely Sch-
AdSs x Ss and a rotating black hole, and from the dynamics—which are now rather
more complicated since the brane can move in all the extra dimensions—determine the
new “dark fluid” terms in the brane Friedmann equation. Some of these, such as the
cosmological constant term, are seen to be bulk dependent. We then show explicitly how
this mirage cosmology approach matches with the familiar junction condition approach
when there is just one extra dimension. The issue of a varying speed of light in mirage
cosmology is addressed and we find a scenario in wtyglalways increases, tending
asymptotically t@p as the universe expands. Finally some comments are made regarding
brane inflation and limitations of the mirage cosmology approach are also discussed.
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1. INTRODUCTION

Recently there has been much interest in the idea that our universe may be a
3-brane embedded a spacetime of five or more dimensions. In particular, following
the work of Randall and Sundrum (1999a,b), brane cosmology in models with one
infinite extra dimension has been studied in depth €Bimyet al, 2000a,b; Cline
et al, 1999; Csaket al,, 1999; Flannagaret al,, 2000; Ida, 2000; Kraus, 1999).
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There are essentially two distinct approaches to determining this brane cosmology.
In the first (e.g. (Bietruyet al, 2000a,b)), coordinates are chosen relative to the
brane which is thus at a fixed position in the extra dimension. The bulk 5D metric,
on the other hand, is time dependent and this time dependence induces a time
dependence on the brane via the junction conditions. The resulting Friedmann
equation on the brane is found to have a characterigtierm (Binétruy et al.,
2000a,b), where is the energy density in matter which is assumed to be confined
on the brane, as well as a “dark” radiation term originating from the Weyl tensor
in the bulk (Shiromizu, 2000).

In the alternative but equivalent approach (e.g. (Ida, 2000; Kraus, 1999)), the
bulk s static and the brane dynamical: the brane moves through a time-independent
bulk metric. If the vacuum Einstein equations hold in the bulk, and if one imposes
that our universe brane has the symmetry of a 3-sphere, then it is possible to
prove that the bulk must be Sch-Agl8owcocket al, 2000; Carter and Uzan,
2001). Thus the brane divides two regions of Sch-Adfd its dynamics can be
determined from the junction conditions. For reasons which will be summarized in
section 2, this motion of the brane through the bulk induces cosmology on the brane
evenifnomatter confined to the brane. This is sometimes called the “mirage” effect
(Kehagias and Kiritsis, 1999) because cosmological evolution is not necessarily
sourced by the local energy density of the brane. When matter is also included on
the brane, the resulting Friedmann equation which one obtains with this approach
is identical to that obtained when the brane is static and the bulk time dependent.
(The explicit coordinate transformation linking the two approaches may be found
in Mukohyamaegt al. (2000).) The dark radiation term can now be understood as
being due to the motion of the brane.

Typically in both these approaches, it is assumed that the brane divides the
bulk into two identical pieces—that is, thereds symmetry across the brane. This
assumption can easily be relaxed and in particdlasymmetry will be broken
if the brane is charged and couples to a 4-form field living in the bulk (Carter
and Uzan, 2001). In context of the moving brane approach, one would therefore
have different cosmological constamts and massebl.. parametrizing the Sch-
AdSs spacetimes on each side of the brane, and thus the brane dynamics would
be altered. In particular, it is possible to show (Carter and Uzan, 2001; Ida, 2000;
Kraus, 1999) that the resulting Friedman equation now has an extra dark radiation
term with energy density proportional ta]/a* (where A] = A, — A_) as well
as a new dark fluid term with energy density proportionalNg[[A] /a8 (see also
section 4.2).

One of the questions we try to address here is the following: if the brane is
embedded in a spacetime of more than five dimensions, what dark fluid terms are
generated in the brane Friedmann equation? To answer this question we work in
the frame in which the brane is dynamical, moving through a static or stationary
bulk. In the usual brane world scenarios, it is important to satisfy the brane junction
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conditions. This reflects that the background metric must be consistent with the
presence of the brane. Unfortunately, it is often not straightforward to apply the
junction conditions when there is more than one extra dimension since the results
typically depend on the thickness of the defecgnd are not well defined as— 0.
However, this is not fatal to our program. For objects with codimension greater
than one, it becomes reasonable to treat them as “test particles” in the background
spacetime. In other words, there is no back-reaction to solve for. This is analogous
to the case of planetary orbits where the Earth, for instance, is treated as a point
particle moving in the spacetime metric generated by the sun (see section 4.1).
Our particular approach to brane cosmology is to consider D3-branes in type
IIB string theory. Such D3-branes are attractive because they are stable and, by
construction, matter is localized on them. Furthermore, an action can, within certain
approximations, be derived (Bachas, 1998); it consists of the Dirac-Born-Infeld
(DBI) action plus a Wess-Zumino term. (For slowly moving branes, the D-brane
action has been used extensively to study the properties of near extremal black
holes (Maldacena, 1996)). The only caveat is that D3-branes are BPS states so that
one must eventually provide a prescription for supersymmetry-breaking. As for
the background in which the branes move, this is consistently determined from the
low-energy string action. Here it is a 10D supergravity action and we consider a
Sch-AdS x Ss bulk metric and a rotating black hole solution, both of which can be
thought of as being generated by a stack of D3-branes. The approach we describe
was coined “mirage cosmology” (MC) and developed in depth by Kehagias and
Kiritsis (Kehagias and Kiritsis, 1999; Kiritsis, 1999a,b) and extended by others
(Papantonopoulos and Pappa, 2002; Youm, 2000,2001; Brax and Steer 2001).
One of the purposes of this paper is to try to introduce MC to cosmologists
who are perhaps more familiar with 5D brane cosmology. (As such, a part of the
work presented here will follow Kehagias and Kiritsis (1999)). The first important
point is that the MC approach is “passive.” As intimated above, the D3-brane is
assumedhotto back-react on the bulk. In this sense, this approach is very similar
to that used to determine the dynamics of cosmic topological defects. It differs
from the “active” 5D case where the junction conditions include the back-reaction
of the brane on the bulk. We dub this approach the junction conditions (JC) ap-
proach. Secondly, notice that when there is more than one extra dimension, the
brane has much more freedom in its motion. For example, in SchpA8Sthe
brane may not only move along the radial coordinate but also aroun&sthe
However, it turns out that the brane angular momentuis conserved around
this & (section 4.1). In section 4.2, we sét= 0 and discuss how the Fried-
mann equation obtained from this MC approach is linked to that obtained via the
junction conditions. In order to make this link though, it is necessary to consider
the situation in whichZ, symmetry is broken (Carter and Uzan, 2001; Kraus,
1999) since D-branes are charged under Ramond-Ramond fields living in the bulk
(Bachas, 1998).
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A final purpose of this paper is to try to present new results on mirage cos-
mology. In particular, in section 5, we consider mirage cosmology in a rotating
black hole background and comment on other work in this area. The possibility of
avarying speed of light is discussed in section 6.1. In section 6.2 we consider brane
inflation when the bulk is generated by a “brane gas” and make other comments
regarding inflation in mirage cosmology. Finally conclusions are given in section 7
where we discuss some of the limitations of this approach to brane cosmology,
perhaps most importantly, the lack of brane self-gravity (see, however, Brax and
Steer, 2002).

2. EFFECTIVE COSMOLOGY FROM BRANE MOTION

We begin by introducing our notation and explaining briefly the “mirage”
effect. Consider an infinitely thip-brane in a D + 1)-dimensional spacetime.
The following index convention will be used to label objects:

f—';Lr—"L
01---p p+1---D (2.1)
———

i

The D+1 spacetime coordinates are denotedkBywith x° = t being the time
coordinate, and the background metyj (x) has signature{ + + - - - +). As the
brane moves it sweeps oupa-1 dimensional world-sheet labeled by coordinates
o'. The position of the brane in the background spacetinx¢ is: X* (o) so that
the induced metric on the brane is
IXH* 9 XY
yij(o) = g#u(x)w 9ol
We consider an infinitely long straight brane parallel to xhdyperplane,

but free to move along the perpendicular coordinatésHence a natural choice
of intrinsic coordinatesis o' = x', and the brane motion is described by

X' =x,  XA=XAq). (2.3)

(2.2)

This is known as the static gauge. If one wanted to study perturbed branes, the rele-

vant embedding would b¥' = x', X = XA(x') (see (Boehm and Steer, 2002)).
Whether or not the induced brane metyi¢ is spatially homogeneous and

isotropic depends on the background metric. The background line-elements

5Of course any brane action must be invariant under reparametrizations 5', hence there is
freedom to choose the+ 1 coordinates so as to simplify the resulting equations of motion as much
as possible.
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considered here are either static or stationary and take the form
ds® = goodt® + )~ Gaa(dX®)® + 200 ps1 At dXPT2 + ) " gan(dx?)?  (2.4)
a A

with
Quv = gp.v(XA)- (25)
The induced metrig;; is then

Y00 = Qoo + 200,pr1 X Pt + Z gaaXAXA
A

Yoa =0
Yab = Gaadab (no sum) (2.6)

where- = 9/dt, and the metric coefficients are evaluated on the brane,i,&x*)

— g (XA)). It follows that y1j = yj(t) and, in particular, that the brane is

spatially flat. To consider a curved brane (see Youm, 2001; Brax and Steer 2002a).
Now let p = 3. We consider backgrounds for whighy = g0 = 933 = g4

so that the brane metrig; is indeed spatially homogeneous and isotrépithe

induced line-element on the brane is

ds® = y;dxdx’
= yoolt) dt? + ga(XA(t)) dx®
= —dr? +a%(r) dx?, (2.7)
where the brane time is defined by
dr = /—yoo(t) dt (2.8)
and the brane scale factafr) by
a(r) = ga(XA(t(x))). (2.9)
This is the “mirage” effect: the brane motion has generated a scale &efoin
the brane independently of whether or not there is matter on the brane. The details

of a(r) depend both on the background, through and on the brane motion,
throughXA(t(z)). Finally the Friedmann equation is given by

2
1da\? 1 1 1 304 - 87 G,
H2=(=2") =-——_ — E — xA = 2.10
(adr) 4|Voo|g§[ <3XA )] 3 (210

A

which defines an effective energy density.

61f g11 # g2 # 033, then the brane metric is homogeneous but anisotropic. Such a situation occurs
when there is a nonzero bulk magnetic NS field (Youm, 2000). Of cosmological interest, would be
situations in which the motion of the brane (i.e. its expansion) leads to isotropization of the brane.
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3. BRANE ACTION AND THE BACKGROUND METRIC

We assume that our universe is a D3-brane in type IIB string theory, and that
the background spacetime in which it moves is generated by all the allowed degrees
of freedom. In the low-energy limit we have a 10D supergravity action from which
the bulk metric may be determined (Stelle, 1997). Apart from section 6.2, the
bulk will be assumed to contain a charged stack of many coincident D3-branes
which generate, amongst other possibilities, a SchA&g bulk metric (Kiritsis,

1996).

The “universe-brane” itself (on which, by construction, gauge fields are con-
fined) can also couple to many different objects and determining its action is still an
active area of research. However, in the simplest case we can think of our universe
as a probe D3-brane whose action is given by (Bachas, 1998)

S=SBI+ Swz = —)»/dA'U\/— det(ij + (2ra’)Fij — Byj) — 3/04, (3.1)

where is the brane tensiony’ is the string tension and is the brane charge
density. The dilaton has not been included because it is constant in the supergravity
solutions being considered. The “kinetic” term, the DBI action, is the volume of
the brane trajectory (the Nambu-Goto piece) modified by the presence of the
pull-back of the Neveu-Schwarz antisymmetric two-foBm, and worldvolume
antisymmetric gauge fields;. (The latter arise due to open strings which may
connect the probe and stack D3-branes.) Thus, for example, if there is radiation on
the braneF;; # 0, and the brane dynamics will be altered relative to the case of a
brane with no radiation.The modified dynamics will in turn change the Friedmann
equation (as explained in section 2) which will thus contain terms reflecting the
presence of the radiation 2 (Kehagias and Kiritsis, 1999 and Youm, 2001) (see also
section 4.4).

Note, however, that the brane action as it stands does not allow for arbi-
trary matter content. Thus, as presented so far, MC cannot provide a full account
of the evolution of our universe. (It would, after all, be unbelievable if our cur-
rent cosmology, based upon 4D gravity and the local matter density, could be
emulated solely by the motion of a brane in a higher-dimensional background.)
However, MC may well have a role to play where our understanding is not well
established, namely at early and late (future) times. Additionally, (3.1) provides
a springboard for more phenomenological approaches. We return to these themes
in (6.2).

"This is exactly the same effect as in the case of current carrying cosmic strings. With no current, the
string action is the NG action. With a current, the action is changed and it may lead to very different
cosmic string dynamics—for example, stable loops called vortons may now be formed éDalvis
2000).
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The Wess-Zumino term in (3.1) is required since the probe D3-brane is
charged under Ramond-Ramond gauge fields living in the bulk. Here it takes
the simple form given in (3.1) because we assume that the stack is the sole source
of RR fields. Thus the only contribution is from a 4-fotfpand

1 OXH XY 9XP OXT - -
Swz = _efCA = —e/ EC“”’”WWW Py do' do! do¥do?, (3.2)

where the gauge fiel@,,,. is obtained from the corresponding field strength
Fauver (Which off the brane and far> 0is a solution ov*Fy,,,,,, = 0). By virtue

of the coordinate choice (3.1), we have assumed that the probe brane is parallel or
antiparallel to the stack. Supersymmetry of the total system remains unbroken only
in the parallel case when the brane is BPS implying ghat) (Bachas, 1998).

The antiparallel case corresponds to the probe being an antibrane@ard-ta..
However, in order to make comparisons with more phenomenological brane world
scenarios and ones using the JCs, we will write more generally

e=gx. 3.3)

4. MIRAGE COSMOLOGY IN SCHWARZSCHILD-ADS 5 X S

A particularly illustrative background in which to apply the mirage cosmology
approach is Sch-Ad& Ss, since if one dropped ths; piece it would correspond
to the background metric used in the moving brane approach to 5D brane cos-
mology described in the introduction (Kraus, 1999). Thus the dynamics of the
brane around th&; should give an indication of which dark fluid terms are gener-
ated in models with more than one extra dimension. The SchyA8Smetric is
given by

2 I'Z

r2 ) ) ) ) L-d
ds® = 5 (= F()dt* +dxf + dg + dxg) + f(r)r2

+L2dQZ (41
where
fry=1— (rr—°)4 4.2)

and dQ2 = hy;(¢)p' ¢? is line element of the unit 5-sphere described by co-
ordinatesgp', | = 0...5. The metric satisfies the 10D Einstein equations with
A = —16/L? andrg = 2GML?2 gives the black hole madd, with G the 10D
Newton constant. In this background the radial position of the brane determines
the brane scale factarsince from (2.9)

r

a= T (4.3)
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We takerg/L < a < oo, though it would be interesting to determine what
happens for a brane that crosses the black hole horizon.

In order to obtaira(z) the brane dynamias(t) must be calculated. Initially
(section 4.1) we assume that there is no radiation on the bFane=(0) and turn
off the bulk NS fields B;; = 0). Then the Friedmann equation which follows from
(4.3) will contain only dark fluid terms. Some of these terms (sections 4.1 and 4.2)
will be seen to be the familiar dark fluid terms of 5D brane worlds mentioned in
the introduction. However, other terms arise from the nontrivial dynamics of the
brane around th& and they can lead to some interesting effects (section 4.3). In
section 4.2 we define precisely the link between this MC approach to brane world
cosmology and the junction condition approach used in 5D. Finally in section 4.4
we consider briefly the case of nonzefg. Parts of sections 4.1 and 4.4 follow
closely Kehagias and Kiritsis (1999).

4.1. Brane Dynamics With No Matter
To maintain some generality we write the bulk metric line element as
ds® = goo(r) dt? + Ga(r) dx® + g () dr? + gs(r) d22 (4.4)

which includes the Sch-Ad& Ss metric of (4.1). The only nonzero compon&nt
of C,.upr IS thenCoy2q(r) = Cy4(r). Thus in the gauge (3.104 = C4(r)d*x and,
with F; = Bj; = 0, the action (3.1) defines a dimensionless Lagrangigmough

S= —,\/d4x,/— det(; —qk/d“x C4EAV3/dt£, (4.5)

whereV; = [ d3x. Using (2.2) gives

L=—J/-gmo—aCi= —JA+Bi2+Ch @)+ (46)

with
A=—-g3goo, B=—-0g0g, C=-030s &=—-qCa. (4.7)

By inspection, sinceC is not explicitly time dependent and tledependence

is confined to the kinetic term fap, the brane geodesics are parametrized by a

conserved energg and an angular momentufd given, respectively, by
E:%hrﬁdﬂ—,c, 2t 0L L (4.8)

oF 3¢ dg! 3g?

8 Actually, the self-duality condition for the field strength fpr= 3 means the 4-form will also have
nonzero components in tHg-directions, but these do not contribute to the WZ term in the static
gauge.



Brane Cosmology in Models with Extra Dimensions 2263

Solving these expressions fprandi gives

s A2¢? . A A (12 -0C)

ho'¢? = —— | 2= 14— 2. 4.9
PP = E e B[ +C(E+8)2} (4.9)

The brane time is then obtained on substitution of (4.9) into (2.8):

1 | s A2 1
dr? = = Bi?+Chyy¢'¢7)dt? = ———- —dt? 4.10
T gg(A+ r“+Chiy¢ ¢%) E+6P @ (4.10)
and the Friedmann equation (2.10) becomes
H2 - _ (%) [A(€? = C) + C(E + &Y. (4.11)
4ABC

The specific forms of4, 3, C, £ anda for the Sch-Ad§x Ss metric (4.1) are

r8 . X4 r4 . x4 -1
AZFf:a <1—¥>, B:—WZ—a (1-;) y

_ort e _ ry X%\ . X4
C=-m@=-2L 5—q<(t)—7>—q(a‘7>
4.12)

whereX = ro/L and we have used the expression for the 4-form in SchsA&S
(Kehagias and Kiritsis, 1999)
rvorg

Finally, the Friedmann (4.11) equation is

2_1 X4L2 E E 2 L4 /X421
H2 =4 + +L6(—><—+—q>+£2—<———>,
L2 a4 a4 at L4 ab a4 L2

(4.14)

where we now rescaled the scale facidny a factor ofL to give it dimensions
of length and the constant part 6f essentially electrostatic energy, has been
absorbed into the energy so tHat= E — qX*/2. Note that the first term is the
effective cosmological constant on the brane but that this vanishesgviet1.

The dependence of this Friedmann equatiorf avill be discussed in sub-
section 4.3 where we will comment on the final term of (4.14) which contributes
a negative energy density for> r o. We now focus on the cage= 0.
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4.2. £ = 0: “Mirage” Versus Brane World Cosmology

When¢ = 0 the D3-brane has no dynamics about$hand hence its motion
is effectively constrained to a Sch-AgBulk with metric

L2dr2
f(ryrz

It is straightforward to work out the Friedmann equation resulting from the MC
approach in this case: it is given in (4.14) where one must se0. (Note that

the cosmological constant corresponding to (4.15) is mow —6/L2 and that

rg = 2GsM L2 whereGs is the 5D Newton constant. In obtaining the Friedmann
equation we use (4.13) which also holds in 5D.) However, as was discussed in
the introduction, the brane dynamics—including the back-reaction of the brane on
the bulk—are also known in this case (i.e. with bulk metric (4.15)) from the JC
approach (Carter and Uzan, 2001; Ida, 2000; Kraus, 1999). The purpose of this
section is to compare these two Friedmann equations. Are they related in any way?
And if so, how do the different parameters relate to one another? In other words,
when there is only one extra dimension, how does the “test brane” MC approach
compare with the “exact” JC approach?

Before making this comparison, note three important points. Firstly, since the
D3-branes we are considering in this paper are charged and couple (minimally) to
a 4-form field living in the bulk, one must consider, in the JC approach, a setup
in which Z, symmetry is broken—see comments in the introduction and Carter
and Uzan (2001). Thus the brane, with chaggsay, divides two different regions
of Sch-AdS with cosmological constants and massas. (M.). Secondly, in
deriving (4.14) we have sé&; = B;; = 0 and so there is no matter on the brane,
thus we must set = p = 0 in the JC approach. Finally, we have considered a flat
brane, sk = 0 in the JC approach.

Once these conditions are imposed, the resulting Friedmann equation calcu-
lated in Carter and Uzan (2001) using the junction conditions depen@sg and
e, as well as five other dimensionful quantities: the brane tensiemwhich is
the same as that in (3.1)—and., M. In fact the combinations which appear
are(M), [M], (A) and [A] where(x) = (x; + x_)/2 and k] = x, —x_. Afinal
important identity relates the force on the brapg-) to the jump in cosmological
constant (Carter and Uzan, 2001):

[A] = 67%e4Gs(F). (4.16)

r2
dg = (= fN)dE+ ¢ +dx +dx) + (4.15)

HereF is defined through the physical 5-form field stren@ih,o: = Feuvpor
corresponding to the bulk gauge fieiq,,,,. From the 5D SUGRA equations of
motion it is straightforward to show th& = K1r3/L*, where the constarn; is
dimensionless, and hence th&; 3 is, up to a multiplicative constant, ju€b123

of (4.13) used in the MC approach (see (Boehm and Steer, 2002)). Furthermore,
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from the equations of motion, the effective cosmological constants are easily seen
tobeAs = A + K,F2 whereK; is another numerical constant and= —6/L>2.

Notice from (4.16) that if the brane is unchargegl= 0, then [A] = 0 so that

there is no force on the brane. Finally the resulting Friedmann equation is (Carter
and Uzan, 2001)

o Au 265M) (3 V' [M] (M)
=g T (g) e (

v + n2e4<F>> : (4.17)

3 a‘
wherea is the dimensionful scale factor, and the effective cosmological constant
A4 is given by

A A) 1 /8tAa\2 1/ 3 \?
T ra(5) orglen) Femr e

If Z, symmetryisimposed,i.eM] = [A] = 0, then (apart from the cosmological
constant term) the Friedmann equation (4.17) contains only the familiar dark radi-
ation term coming from the electric part of the Weyl tensor. Witlzagymmetry
there is the extra dark radiation term plus a contributioa—8, as mentioned in
the introduction.

How does this Friedmann equation (4.17) compare with the Friedmann equa-
tion (4.14) obtained from the DBI action whén= 0? That equation is

2_1 2GsM E\/E 2
He=9 2 ot f; +L° (Q) <§ + L—i) : (4.19)

Notice first that (4.19) and (4.17) have a very similar form, and in particular
exactly the same scale factor dependence. The familiar dark radiation term of
Z, symmetric brane worlds is also found in the MC approach—it is the term
2GsM /a*—and the two approaches are seen to lead to the same “dark” fluids on
the brane.

Next one can compare the coefficients of the various terms in Eq. (4.19)
and (4.17). How are the four parametags €, M, A) parametrizing the geodesic
motion of the test brane in Sch-Agl&lated to the five parameters (M4, AL)
in the JC approach? Clearly this identification will force two of these last six
parameters to be related. However, before making this identification note one final
important point: it is the application of junction conditions which gives rise to
the term proportional t@&Z in (4.18), and we should not expect such a term in
the MC approach. Comparing (4.17), (4.18), and (4.19) this is indeed verified.
Furthermore, since botlhande, are brane charges, we expgai e; so that one
deduces that

A=(A), M= (M). (4.20)

9The brane tensioh is related to the paramet®s, of Carter and Uzan (2001) b, = 44 /3.
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Thus the masM, for example, of the Schwarzschild black hole in must be identi-
fied with the average masgh®l) in the JC approach. Then, sincés independent of
M, it ought to be independent of{], and this forced.* o« A~1. Here the constant
of proportionality is arbitrary because of the freedom in hBws defined and
because is also scaled by the multiplicative constant relatig,,, andC,.,,..
Thus we are free to write

2q

=[M] == 72e4(F) (4.21)

| m

which forces

(A) = —4/6ra. (4.22)

4.3. Effects of Angular Momentum

We now return to the full 10D case of section 4.1 and consider nonzero
angular momentum¢ # 0. Now the Friedmann equation (4.14) has two extra
contributions. The first is proportional 8¢ and is characteristic of an equation
of statew = p/p = 1. However it contributes with a negative energy density in
(4.14). The second is proportionaldo® which would correspond to matter with
equation of statev = 7/3. To understand the effect of these terms, it is helpful
to construct an effective potential for the brane motion as a function of the radial
coordinate .

Our approach is the same as that used when considering planetary orbits: the
constants of the motion are used to eliminate all but the radial degree of freedom.
Then the 1D equation of motion follows from the Lagrangians %fz — Veit(r),
whereVes = E — 32

Here, two effective potentials can be constructed. The fif§t, determines
the brane dynamics as seen by an observer outside the brane whose time coordinate
ist:

1, A A@?-c
Velr, £, B) = B - 5% = E+%[“Eﬁ]
B 1/r\4 , 2. (L4 4719) ]

where we have used (4.9) followed by (4.12). In a similar way, the second potential
V&, which is defined for an observer living on the brane, is given by

’(rKE)zE—} dr 2—E+ % [C(E + £)* + A(¢? - C)]
eff i ™ =1 2\dc/) 2ABC
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Fig. 1. The rescaled effective potentia; for g = 1. The
parameters are = 2andL = 1. The lower curve has= 0,
the upper oné = 5, and the middle oné = ¢; = 3.49.

1/LN\®| r2/, 18 . r4\?
:E+§<?) |:fp<£ +F>—<E+qp> . (4.24)

This second potential is more relevant for cosmology. Initially, however, we study
both potentials, focusing on BPS branes for whick 1 (for g # 1 see (Boehm
and Steer, 2002)).

First consider some properties\df;. Sincef = 0 at the horizonr( = ry), it
follows from (4.23) thaV(ro) = E andaVq/or |,;, = 0. Hence the potential
has a turning point at the horizon. Als(r — co) = 0. Thus only wherE = 0
does the brane have zero kinetic energy at infinity. The behavigfofetween
the horizon and infinity depends on the sizetéf This is illustrated in Fig. 1
where we have introduced the rescaled quantitigs= V. L*/rd, E=EL%/r,
f=r/ro,L=L/roand¢=¢L2/rd.

If £ =0 (the lower line in the figure) and the brane is moving radially in-
wards, it reaches the horizontas> oo where it is “absorbed” by the black hole.
Alternatively, a brane initially moving radially outwards escapes to infinity.

If the brane has a large angular momentijras in the upper curve of Fig. 1,
then a centrifugal potential barrier forms. Thus if the brane initially moves inwards
from infinity, it bounces back at a given radius to move back out to infinity. On the
other hand, the brane could also be trapped in the small region near the horizon (see
Fig. 2). Suppose that a brane moves radially outwards in this region: it continues
moving outwards until it is reflected off the potential barrier eventually being
absorbed by the black hole.

There is a critical value of the angular momentémand corresponding
critical radiusrc > rq for which Vis(rc) = E and aV}/ar |,_,, = 0. (See the
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Fig. 2. Detail of the rescaled effective potentig;. The pa-
rameter<E andL take the same values as in Fig 1. The lower
curve had = ¢ = 3.49 and the upper orfe= 3.7. The crit-
ical radius isf¢ = 1.39.

middle curve in Fig. 1 and the lower one in Fig. 2). With this angular momentum
the brane may reach a stable circular orbit with radiughe expression fof; is
given in the appendix.

Now consider the effective potentigly; of Eq (2.24). This describes the
brane trajectory as a function of brane-timeand since (r) = a(z), also the
behavior of the scale factor. Notice thf(ro) = E — SX8(E + 1X*)2 #01is
¢ independent, and that as— oo, V% — E. Hence in this limit {r/dz)? = 0,
which reflects the fact that there is no cosmological constant in this cage<{df).
Furthermore, observe that the coefficient of éh¢erm is positive and is given by
fL2/2r%; this is responsible for the centrifugal barrier.

The behavior o} as a function of is shown in Fig. 3. Again one identifies
three regimes:

e ¢ < (.. The universe either expands or contracts forever. Expansion/contr-
action depends on whether the brane initially moves radially outwards/
inwards.

e (> {.. Here there are two possibilities. (i) The universe initially contracts
—corresponding to the brane moving in from infinity—before bouncing
off the centrifugal barrier and starting a period of expansion. (ii) The brane
moves radially outwards from the horizon, expanding at the same time,
and then bounces off the centrifugal barrier. It then contracts before it
terminating its life after some finite brane time inside the black hole—a
“pblack crunch.”
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Fig. 3. The rescaled effective potent; for the same values
of the parameters as in Fig. 1.

e ¢ = (.. If the brane moves radially inwards from infinity, the universe will
contract but the rate of contraction will decrease until, after an infinite
amount of time, the scale factor takes the constant valaer.. If, on
the other hand, the brane moves radially outwards from the horizon then it
expands but again the scale factor reaches the aattie.. When curvature
is included this can lead to cyclic universes (Brax and Steer, 2002a)

Allied with the question of brane dynamics is the question of brane initial
conditions. Clearly for an expanding solution we require the brane to moving
outwards from the black hole, but this begs the question of how the brane came to
be in this state. One interesting idea is to suppose the brane is Hawking emitted
from the black hole. However, the probability of such an event is thought to be
extremely low (Maldacena, 1996).

4.4. Radiation on the Brane

So far we have focused on the dynamics of branes with no matter on them. In
this subsection we comment very briefly on branes with radiation, tHaf ig 0
(see (Kehagias and Kiritsis, 1999)). The important point is that the Friedmann
equation resulting from the MC approach containso@g terms, but only terms
linear in proq (the energy density in radiation on the brane). In contrast to the back-
reaction of the brane on the bulk metric is responsible fopfheterms in the JC
approach (Bietruy,et al,, 2000a,b; Kraus, 1999).

As mentioned in section 4.1, if electromagnetic fields are present on the
brane their nonzero energy density affects the brane dynamics via the action (3.1).
Following Kehagias and Kiritsis (1999) we now determine the effect of a uni-
form electric field(E?) on the brane dynamics and hence its contribution to the
Friedmann equation.
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From (3.1), the Lagrangian is now

£=—\/A—|—Bf2+Ch|Jd)'¢}J—Ezg§+55—ﬁ+5 (4.25)

whereE2 = 27a'E E' andEy = — A in the gauge®, = 0. The equation of mo-
tion for E; gives (Kehagias and Kiritsis, 1999)

E?="—r, (4.26)
94
whereu? = 2ro’ui ' andu; are integration constants. Solving #f yields

2
2.2 K 22 a5
7= () (s s e,

so that (4.25) becomes

Lz_\/A'+B/f2+C/h.J¢'¢J+5, (4.27)

whered’ = A (1+ u? g‘z) and identical relations hold f&’ andC’. Hence the
expressions far? andh, ;¢' ¢? are just asin (4.9), but witd — A, etc Further-
more, it is straightforward to show that? = g3.A~2(E + £)?(1 + n?gy?)dz? so
that the Friedmann equation including the effects of radiation is

How = H® + H), (4.28)

total —

whereH?, which is independent qf?, is given in Eq. (4.10), and

H22 — _i(g{j)ZMZ [C(E+(€)2+A£2]
(E% A4ABC g4
ELS\* , /L8 /X2 1
:prad<q|-+?> +¢ Prad(a ) (?_F> (4.29)

Here, sincepraq = n?/a* is energy density in radiation, it would appear that the
4D Newton constant should be identified with

81 Gy _ 2L2 _ 16q2

= = . 4.30
3 N (4.30)
Hence, to summarize, the final result (now setting 1) is that
87 G
H? = 3 4:Orad +A

X“L2 4 EL ELS LLY /xA2 1
A= Tl “)[<a )(Z”—)” E(T‘F)]

(4.31)
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As commented above, this is lineargn|f Eq. (4.31) were to describe a realistic
cosmology then one could now proceed to try to constfaiR, L andrg by
nucleosynthesis constraints.

5. MIRAGE COSMOLOGY IN A ROTATING BLACK HOLE BULK

An aspect of the Sch-Ad% Ss background which simplifies considerations
is that the scale factor is just the radial distance of the brane from the black hole.
When the brane moves in other backgrounds the expressi@{#pis generally
more complicated: recall from (2.9) that(z) = gq(X”(1)).

As an example of this, we consider MC in a rotating black hole background.
This supergravity solution was constructed in Kratigl. (1999), and brane dy-
namics and thermodynamics in this background were studied in (Cai (1999) and
Cai and Soh (1999)). The possibility of a varying speed of light effect in MC was
addressed in (Alexander (2001) and Kiritsis (1999b)). In this section we introduce
a general formalism for studying MC in the background of a rotating source. We
clarify and correct aspects in recent literature. Additionally, we consider the dark
fluid terms that arise in this model. We comment more fully on varying speed of
light effects in section 6.1.

5.1. Background Metric
The metric for the rotating black hole solution is (Kraatsal., 1999),
dr?  4mlcosha

1 .
ds? = ﬁ(_ hdt® + dxZ + dxg + dx3) Jr\/7[T ~ — AT sirfodtde
+ r3(Ade? + A sir129d¢2+cosz9d§2§)} (5.1)
where
2m sintf o R4
+ r4A + r4A
12 cogo
A=t
Aot 12 N 2ml? sirt o
o r2 r6Af
2m
h=1-
r4A

.1 12 2m
h=X<1+r_2_r_4> (5.2)
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Note that this solution is not singular unlike the 4D Kerr mettighe total (quan-
tized) D-brane charge of the black holeRsvhereR* = 2msinha cosho.

The black hole rotates in tlge plane and its angular momentum is determined
by :if I = 0 the off-diagonal terms in (5.1) vanish and the metric is that of a D3
black brane whose MC was considered in Kehagias and Kiritsis (299=)e
metric describing rotation about more than one axis was also constructed in Kraus
et al. (1999). Together withp, the coordinates and6 in (5.1) are the usual
coordinates describing a 3-sphere. Notice that the metric coefficients are functions
only ofr andé but note. In a similar way to the Sch-Ad& Ss metric considered
in the previous section, there is a factorized 3-sphere contribution.

The horizon is the surface given byr) = 0 so that

=g = (Vitram-1?).

A second critical surface, the infinite red-shift hyperplane, satisfiegs= 0. We
have

r2=r§o=%(\/l4 costf + 8m — |2 c0§9) (5.3)

and that ., > ro, with equality holding at the pole# (= 0, ).
It is convenient to introduce the function
4

fo=1+—. 54
0 + CAA (5.4)
Then the 4-form potential for this background is (Kratsl., 1999),
1-f\ IV2mR2 , .
Cs=— ( : ) — —aAT Sir? 0. (5.5)

Finally, note that the brane scale factor is giveraby f ~/4. However, as we
shall see shortly, we consider trajectories in whichr /2. ThenA =1 so that

§4 —-1/4

Thusa is bounded bymax = 1 (asr — o) andamin = (14 R*/rd)~¥* (asr —
I’o).

10The 4D Kerr metric can be obtained from the 10D metric in the following way. First get rid of six
dimensions, namely' and23. Then pute = 0 (which is not too surprising sinae contains the
string parameters). Finally, for dimensional reasons; mr3.

11\e believe, however, that there is a slight misprint in the Friedmann equation obtained in Kehagias and
Kiritsis (1999) in that case: Eq. (5.6) of Kehagias and Kiritsis (1999) should Eead{ (1 — a*))?/a®
rather than E + £a%)?/a8.
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5.2. Brane Dynamics With No Matter

In the static gauge, substitution of the metric (5.1) into the action (4.5) gives
(Alexander, 2000; Cai, 1999)

1 | sirfe .
L=—|/h—fa2—14 fo+— 21— f)p (5.7)
f sinha
where we have set = 1 and
2 4ml coshe ., - y o :
0 = — TCOS G2 g 1 r2(AG2 + A sirf0g? + cod092).  (5.8)

h r4Af
Itis straightforward to obtain the equations of motionddrom (5.7) and to show
thatd = 6 = Oiif either si = 0 or co® = 0. Hence the brane will remain in the
samed-plane ford = 0, /2. _

If & = 0, then the coefficient of the terms vanish in (5.7) and (5.8) so that
one is left with diagonal metrics of the form discussed in (4.4). Since we want to
study the effect of black hole rotation on brane dynamics, we ch®eser/2 so
thatr2 = +/2m and the Lagrangian becomes

L:—\/A+Bf2+cgb2+2D{b+5+g¢E—ﬁ+5+g¢ (5.9)

where

«4=—93900=%, B = —g3g =15
C = —039p = —?5, D = —g3ge = %g—:, (5.10)
and from (5.5)
o (1—f fo) _ _%
9= sir:hoe s f_ 2 I;/42f_m§2. (5-11)

Notice that the coefficient af23 in (5.1) vanishes whem = 7 /2 so that the brane
can have no angular momentum about this 3-sphere; hence this is a different set
up from the one considered in the previous section. However, the brane does have
a conserved angular momentum aboutgtdirection:¢ = 9.£/d¢.

From (5.9) the angular momentuérand energ\E are given by

1 1

- > = ﬁ(cder)—g (5.12)

(=G (Co+D), E

121n fact our Lagrangian differs from theirs by an irrelevant overall constant.
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so that
_AG+DE 2 _ (AC-D?) [—AG? — CE2 — 2DGE + (AC — D?)]
M T B M2

(5.13)
where we have defined
=—t+G, E=-E—€& M=DG+CE. (5.14)
Notice that on settin@® = G = 0, Egs. (5.13) reduce to (4.9) as required. Finally,
the brane time is obtained by substituting (5.13) into (2.8) to give
1 , . . 1
dr? = S(A+ Bi? + C¢* + 2Dg) dt* = =~ —(AC — D*?dt’.  (5.15)
(oK oM
We are now in a position to construct the different effective potentials defined
in section 4.3. The firsty!4(r, ¢, E), is given by

(AC — D?) [-AG? — CE? — 2DGE + (AC — D?)]

Vi, 6 E) = E— = e

(5.16)

In Cai (1999), an attempt was made to study this potential in the limitgthat
0 = ¢. However, it is clear from (5.13) that this is not a consistent choige=f0
then$ = 0 only for a very specific value af, namely whendg = D(E + &).
Instead, one should study (5.15) for arbitréry

First notice that at the horizon=rg, 51 =0 so thatvefﬁ(ro) = E and
aVig/or| = 0. This is just as for the effective potential discussed in section

o
4.3. Now, however, as — oo,

1
2E?2
so that only forE| > 1 will the brane be able to escape from the rotating black
hole: whenevefE| < 1 the brane is trapped. The behavioMf; as a function of
{—the brane angular momentum—is similar to that discussed in section 4.3. For
all values ofl andm, there is a critical value of the angular momentéyrabove
which a repulsive centrifugal barrier forms. At= ¢. (where. is of course a
function ofl, m and the other parameters) there is a corresponding critical radius
r =r¢ in which the brane is in a stable circular brane orbit with constant angular
velocity ¢c. (For any other value of, the radius is not constant and hence, from
(5.13),¢ is not constant either.)

Given the equations of motion above, one may ask if there is a solution in
which the the relative position of the brane to the rotating source is constant. In
other words, is there a solutign = Q whereS2 is the angular velocity of the black
hole given by = v/2R~2m~%/2|r 2 (Cai and Soh, 1999; Krawg al, 1999)? In Cai

Vi) = E+ =1 - E? (5.17)
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(1999) it was assumed that such a solution exists and the thermodynamics of the
D3-brane was then studied as a functiom ¢§ince for a static probe, its distance
to the source can be regarded as a mass scale in the SYM theory (Tseyltin and
Yankielowicz, 1999)). In particular, by calculating the entropy and heat capacity
of the brane fow = /2 and¢. = €, it was shown that there are two critical
points for which these thermodynamic quantities diverge leading to interesting
conclusions regarding the mass scale of scalar fields in SYM theory (Cai, 1999).
Our analysis of (5.17) suggests, however, that generigaly 2. For a given set
of (I, m, &), the value ofp. depends orE and there is only one specific value of
E = E. for which¢, = Q. If for some reason these specific valueséf E.) are
chosen (this is a set of measure zero) then the radial distance of therbtamg,
is also fixed. Hence it does not appear consistent with Egs. (5.13) to study probe
brane thermodynamics by settipg = Q2 and then letting vary.

We now turn to the cosmologically relevant effective potert|(r, £, E)
given by
3

: _e_ T 9 1 um2 82 onEs 2
V&(r, ¢, E)=E 2B(CA_DZ)[ AG? — CE% — 2DGE + (CA — D?)].
(5.18)
In the limitr — oo,
Vi — E— %(EZ —1) (5.19)

sothat once again f¢E| < 1the brane cannot escape from the rotating black hole.
Notice that there is a significant difference betw&pin this rotating black hole
bulk and that obtained for the Sch-AglSSs bulk: there the brane (with = 1)
always had zero kinetic energy at infinity sinég(r — oo) = E. In other words
the cosmological constant on the brane vanished. Here, on the other hand, it is
clear from (5.19) that even whenp= 1, the cosmological constant only vanishes
whenE = 1 (as in that case the brane has no kinetic energy at infinity). This is the
first indication that the dark fluid terms in the Friedmann equation will be rather
different in this rotating black hole background (see section 5.3).

In the limitr — rq, V% < E, and notice also that the coefficient of the
term is positive so that once again we expect a centrifugal potential barrier. The
brane motion can be summarized as follows

e E < 1. Independently of, the brane will be trapped in a region near the
horizon and eventually be absorbed by the black hole.

e E > 1. Here one has similar behavior to the one in the SchsA&s
background. That is, there is again a critical angular momeritwwhich
divides the brane trajectories into two different categories as discussed in
section 4.1.
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_6..

Fig. 4. The effective potentiaVg;. The parameters arg = 1,

{2 =05, R* = 4 (so thatrg = 0.88r), the angular momentum
72 = 0and the energ = 0.5. As discussed in the text, the brane
will inevitably be trapped and fall into the black hole.

The behaviors are illustrated in Fig. 4 far< 1 and Fig. 5 forlE > 1, where
we have introduced the dimensionless quantitiesr /o, | =1/re, R = R/l
and? = ¢/r.

In this rotating black hole background, the existence of stable circular orbit
withr > r g was required by Alexander (2000) who studied the effects of a varying
speed of light in MC (see section 6.1). In Alexander (2000), however, a rather in-
volved mechanism was constructed to stabilize the brane in a circular orbit at some
r > ro (this was required since the only stable circular orbit was thought to have

Fig. 5. The effective potentiaV;. The parameters arg =1,

{2 =05, R* = 4, and the energ§ = 2. Once again there are the
three possible regimes, depending on the angular momentum. Here
the values aré? = 0 for the lower curvef? = £2 = 2.038 for the
critical curve, and’2 = 2.5 for the upper curve.
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radiusr = rowhere the speed of light vanishes (see section 6.1)). According to our
analysis, a stable circular orbit with> r o always exists wheh = ¢.—and given
our analysis of section 4 this is indeed the case whether or not the black hole rotates.

5.3. Friedmann Equation

We end this section with a few comments regarding the dark fluid terms
which appear in the Friedmann equation when doing MC in this rotating black
hole background. As mentioned above, we expecEatlependent cosmologi-
cal constant. Combination of Eqgs. (5.15),(2.10), and (5.13) yield the following
Friedmann equation:

Hz—  9a(9y)?

4B(CA — D?)
Unfortunately, the right-hand side of this equation cannot simply be written as a
sum of terms of the form /&P for some powermp, since nowr is not a simple
function of the scale facta: inversion of (5.6) yields

[-AG? - C&2 — 2DGE + (CA — D?)]. (5.20)

~ a

r= R—(l—a4)1/4'

(5.21)

Thusitis not possible simply to read off the dark fluid terms; we conclude that these
terms are background dependent (the same conclusion was reached in Kehagias and
Kiritsis (1999) as a result of studying a number of different static backgrounds).
However, one can study the behaviortléf whena <« 1. Thenr ~ Ra, and a
straightforward Taylor expansion yields

o+ Ca® 4 cga’ + Cea®

H?2 SR (5.22)
where
ce = RE(E%—1)
|2
co=rt (2= 1)
¢, = R + E)?
co = R?(1%(1+ E£)? 4 €3(5% — 1)) — 21¢v/2m(1 + £E)
and
g:E{_“:cosha = 1+2~—m.
R4  sinha R4

Hence as in the case of the Sch-A&Ss black hole of section 4, for smadl,
H? contains dark fluid terms proportional &1, a—8, a=%, anda—*. However,
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it is important to notice now that even if the angular momentuof the brane
vanishes, there are still the contributions goingaa® anda~1° in the Friedman
equation. These are now sourced by the angular momentupaf the black hole
itself rather than that of the brane.

6. COMMENTS ON CAUSALITY AND BRANE INFLATION
6.1. Causality

In brane world scenarios it is well known that Lorentz invariance is violated
(Caldwell and Langlois, 2001). This reflects the fact that gravitons can propagate
in the bulk whereas photons are confined to the brane: hence gravitational and light
signals generally take different times to propagate between two given points on
the brane. In the context of MC, varying speed of light effects have been discussed
by Kiritsis (1999b) and Alexander (2002) for slowly moving branes (we will be
more specific about the meaning of “slowly moving” below). Our aim here is
therefore to comment briefly on this varying speed of lighg, without making
any approximation regarding the brane dynamics since this was obtained exactly
in sections 4.1 and 5.2. (In fact it is not entirely clear to us whether this “varying
speed of light” effect should not referred to as a redshift effect. However we
use the terminology “varying speed of light” as in Alexander (2000) and Kiritsis
(1999b).

In Albrecht and Magueijo (1999), an investigation was made of the cosmo-
logical problems which may be resolvedif was always larger in the past. Thus
in MC we search for an expanding universe for whighis always a decreasing
function stabilizing at a constant valuwg ast — oo. Notice that in Alexander
(2000) the universe-brane was always considered to be approaching the black hole
(corresponding to a contracting universes). We consider the case when the brane
moves radially outwards and hence expands: how dggsehave in that case?

When photons are present on the br&tje# 0 (we still keepB;; = 0). Ex-
pansion in powers of’ « 1 of the D-brane action (3.1) in the static gauge for
g = 1yields, to second order,

S~ -2 / d*x/—dety; — A / d*xC, (6.1)

A
+(27m/)221 f d'xy/—dety; x tr[y Py tF] + - (6.2)

HereA = A;;, and note that the term linear dri gives no contribution sinck is
antisymmetric so that4r1F = 0.

Sincea’ « 1, tofirst order the brane dynamics will be governed by the terms
in line (6.1) and hence will be given by (4.9) for a Sch-A&Ss background, or
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by (5.13) for the rotating black hole background. Furthermore
tr [y Py F] = vg T [—v%E? + v B (6.3)

whereFg = E; andFj; = €% B, and we have definegh, = ygan. Hence (6.2)
is a kinetic term for the gauge fields:

A A
(2710/)2‘—1 / d*xy/—dety; x tr [y '"FyF] = (2710/)25

x f d*x (—AE? + BB?) (6.4)
where
. 1/2 . 1/2
A= <£> B— (M) , (6.5)
[vool Yd
so that the effective speed of light is
1/2
Ceff = <M> (6.6)
W

Here we have used the definition®@iven in (4.6). Notice thaf andC4 must be
evaluated on the brane trajectoXyr) so that the effective speed of light clearly
depends on the dynamics of the brane itself.

Since we search for a scenario in whicdy tends asymptotically tgy as
the universe expands, there are two cases to consider: (i) éithey so that the
universe expands reaching— oo ast — oo, or (i) £ = £, in which case the
scale factor stabilizes at a finite valuerof r.. We analyze these cases first for
the nonrotating Sch-Ad& Ss background of section 4.

6.1.1.Varying Speed of Light in Sch-Agt&S;

In this case Eq. (6.6), becomes

1
=2

94

Cef \/<A+BF2+Ch|J¢'¢J). 6.7)

If the brane moves slowly (Alexander, 2000), then the first term in the square-
rootdominates anckt =~ v/ A/g3 = /T(r) = /1 — (ro/r)* (where we have used
(4.1) and (4.7)). This resultis independento&nd/ (respectively the energy and
angular momentum of the brane) andLlafAlso cef = 0 atr =rg andce — 1

asr — oo so thatce increases as the universe expands.
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Fig. 6. The rescaled effective potentisly, for £ = £ (upper
curve) and effective speed of lights (lower curve) in a Sch-
AdSsxSs bulk. The parameters are as in Fig. 3 so that 1,
L =1, andE = 2. The upper horizontal line is the energy= 2.

If the brane does not move slowly, substitution into (6.7), of the specific
expressions for2 andh, ;¢' ¢’ given in (4.9) yield

1 A rone] [ EL4 -

Ceﬁ_ggE+5_|:l (r)i|(r4 +1> ’ (6.:8)
Hencece now depends on the enerd@yof the brane, though not on its angular
momentumé. However, we still have thates = 0 atr =rg and thatces — 1
asr — oo. Also, from (6.8),cex is a strictly increasing function af. Figure 6
showsces and the effective potential; whent = £.. Thus once again, as the
brane moves outwards from the horizon and expangglecreases. Furthermore,
if £ = £, thences stabilises at a value neaf2. Hence the only way in whicby
can decrease and stabilize at late times §s4f £; and the universeontracts

6.1.2.Varying Speed of Light in the Rotating Black Hole Background

A similar analysis for the bulk of section 5 yields
1 AC- D?
g% oM
Here A, C, D are given in (5.10)M in (5.14) and we have chosén= /2 as in
section 5.2. Notice thatg is now a function of botte and¢.

In the limitr — oo, cef — 1/E (this reflects theE-dependent cosmolog-
ical constant in this case). One can also show thgaincreases as increases.

Hencece tends asymptotically to 1 as— oo only if E = 1. For this rotat-
ing black hole background we do not present plotegfcorresponding to the

Ceff
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different curves in Fig. 5; the overall behavior @f is similar to that shown in
Fig. 6. For the parameters of Fig. 5 with= ¢, Cef ~ 0.2 atr =r. and then
tends asymptotically to/R asr — oco. Thus once again, the only way in which
Ceff Can decrease and stabilize at late times B i# 1, ¢ = ¢, and the universe
contracts.

6.2. Comments on Nonrelativistic Brane Matter and Inflation

So far only the effects of radiation on the brane have been considered in MC.
(To the best of our knowledge this is also true of the rest of the literature on MC.)
How can nonrelativistic matter be included starting from the D-brane action? The
answer probably lies in the fermionic sector of the string action which has not been
considered here.

As an alternative, one can take a more phenomenological approach and add
by hand matter on the brane with an arbitrary equation of state (Parry and Steer,
2001). A byproduct of this approach is that, depending on the bulk, it is possible
to show that inflation can occur on the brane @e- ¢ with « > 1) (Parry and
Steer, 2002), but not in the bulk. An interesting realization of this occurs in the
following case: suppose the bulk is generated by a brane gas (Alexander
1999), and consider the late time behavior of this gas. The bulk metric, which is
assumed to be flat and roughly homogeneous and isotropic, is described by a scale
factora(t) and depends on the dilaton fiedt) and bulk matter parametepsand
p (energy density and pressure respectively). With the standard embedding, a 3-
brane moving in the bulk sees an induced scale faxtgt)), wherer is the brane
time. It is the difference betweenandt which is responsible for the different
evolutions of the brane and the bulk.

In this scenario, one considers a phenomenological brane action of the form

S=/d4x~/—yﬁ=/d4XM{e‘¢A+se—m¢£b}

rather than (3.1), wherm and ¢ are dimensionless constants which determine
the coupling of the dilaton to the brane matt&y. Notice that any coupling to

a 4-form has been neglected. The first term above is just the general expression
for the kinetic term of (3.1) for nonzero dilaton. Given this action it is not hard
to solve for the brane dynamics, and hence to obtain the brane scale factor in
the way outlined in section 2. Furthermore, if the brane initially héerge ve-

locity (e.g., it is formed as the result of a collision process—s#&y-a5 brane
annihilation (Alexader, 2001; Majumder and Sen, 2000)) ang i&> A then in-
flation may occur on the brane in the radiation dominated epoch: in Parry and
Steer (2002) this setup is analyzed in detail. The result is that for the natural cou-
pling to the dilatonm = 1, the brane inflates when the bulk is comprised of stiff
matter.
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A rather different realization of inflation in MC comes from observing that
if the brane moves slowly then the action (3.1) may be expanded in powgfts of
leading, to first order, to action quadraticfih The fieldr can then be identified
with the inflaton which now has an unusual kinetic term, and combined with the
potential term it can lead to inflation. Indeed the resulting setup is reminiscent of
that of Burgeset al.(2001), and this approach can be used to study brane inflation
in a bulk for which supersymmetry is broken, and inflation is ended by tachyon
condensation (Brax and Steer, 2002b).

7. CONCLUSIONS

In this work we have tried to summarize some aspects of the approach to brane
cosmology known as mirage cosmology (Kehagias and Kiritsis, 1999). Here the
brane is a D3-brane in type IIB string theory and it moves in a 10D bulk metric. As
opposed to the 5D junction condition approach to brane cosmology, the D3-brane
is treated as a test brane and hence it is straightforward to consider more than one
extra dimension.

As explained in section 2, brane motion can induce an effective cosmology
on the brane, and once the dynamics of the brane is determined the correspond-
ing Friedmann equation can be obtained. Those parts of the Friedmann equation
solely generated by the motion of the brane (and not by matter on the brane)
are the dark fluid terms. We have tried to see how the familiar dark radiation
term (Binétruy et al, 2000a,b) generalizes when there is more than one extra di-
mension, and this was done for the two specific 10D bulk metrics of sections 4
and 5.

In section 4 we studied the dynamics of the probe D3-brane in a Sch-AdS
Ss bulk for which the brane geodesics are parametrized by a conserved energy
E and an angular momentufabout theSs. For all ¢ we saw that the cosmo-
logical constant on the brane vanishedji& e/A = £1 corresponding to BPS
(anti-)branes. Also the Friedmann equation was found to contain dark fluid terms
proportional tea—*, a—8 and to¢?a~%, ¢2a~1°,

When{ = 0, the brane motion is constrained to Sch-AdEhere, however,
the exact brane dynamics (including the back-reaction of the brane on the bulk)
can be calculated (Carter and Uzan, 2001; Ida, 2000; Kraus, 1999). As discussed
in section 4.2, the MC results must be compared to a JC calculation in \ighich
symmetry is broken since the D3-branes couple to the bulk RR field. We saw that
the MC and JC Friedmann equations had the same dark fluid terms, and a further
analysis of those equations linked the parameters of the MC appr&aete) to
those of the JC approach (Egs. (4.20)—(4.22)). For that analysis it was important
to allow the D3-branes to have an arbitrary RR chayrge

Nonszero angular momentuhz# 0, generated dark fluid terms a9, a®.

As a result different types of brane trajectories were seen to exist depending on
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whether or not was greater or smaller thdg (Fig. 3):

e (< (.. The brane contracts/expands (corresponding to inward/outward
radial motion) for allz.

e ¢ ={.. A (contracting) brane moving radially inwards from infinity
reaches, after an infinite, a critical radius in which it rotates around the
black hole in a stable orbit. An expanding brane moving radially outwards
from the horizon reaches the same stable critical radius.

e ¢ > (.. A centrifugal barrier develops. A (contracting) brane moving ra-
dially inwards from infinity bounces off this barrier after a finiteThen
it moves radially outwards and starts to expand. Similarly a (expanding)
brane moving radially outwards from the horizon is also reflected by the
barrier after a finiter; it starts moving radially inwards and contracts until
it is swallowed by the black hole.

In section 4.4 we commented on the addition of radiation to the brane. The
resulting Friedmann equation only contains terms proportionakdpand not
24 because of the “passive” nature of the MC approach. In principle, given this
Friedmann equation, one could try to constrain the different parameters (such
as ¢, E) via nucleosynthesis constraints. One reason for not doing this is the
(current) lack of a treatment for nonrelativistic brane matter in this MC approach.
Since D3-branes are BPS states, perhaps this problem will be related to providing
a prescription for supersymmetry-breaking. How to do all this is an important
question for future work.

The purpose of section 5 was to consider a slightly more complicated bulk
and to try to see how many of the results presented in section 4 are in fact bulk
dependent. We considered the dynamics of a brane in the rotating black hole metric
of Eqg. (5.1) and found that the main differences with the Sch-AdS bulk are

e An E-dependent cosmological constant on the brane which does not vanish
wheng = +1 unlessE = 1.

e Brane trajectories which were always trapped by the black hdte<f 1.
For E > 1 the three different classes 6fdependent trajectories outlined
above were found.

e Fora « 1, dark fluid termsx a=%, a6, a8, anda=*, the first two of
which didnot vanish wher? = 0 since in this case they were sourced by
the angular momentum of the black hole itself (bel).

Finally for both bulks, we considered the behaviorcg§ as the universe
expands. In the Sch-AdS Ss bulk ce is ¢ independent (buE dependent) and
vanishes at the horizon. Asr — 0o, Ceff tends to 1. Hence for a brane with
£ < £, (which expands for alt), the speed of light always increases tending to 1.
For ¢ = ¢, the asymptotic value isg < 1. Similar behavior holds in the rotating
black hole bulk.
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There are many interesting aspects of mirage cosmology which we have not
studied here. One of these is the question of the initial singularity (Kehagias and
Kiritsis, 1999), and another is an interpretation of the results presented here (and
especially the role of the critical angular momentéghin the context of SYM
theory and black hole thermodynamics.

A final crucial ingredient, which is required for MC, is a description of brane
self-gravity (see Brax and Steer 2002b). As was discussed in the introduction, our
approach is to treat brane motion as similar to planetary motion. In the latter case,
one usually leaves the question of self-gravity to the geophysicists. However, as
cosmologists, it is necessary to know about the internal evolution of the brane.
Since it is extremely unlikely this will be induced solely by the motion of the
brane in its background, we require an understanding of how local energy density
on the brane sources gravity on the brane. Before mirage cosmology can become
a fully-fledged cosmology, this vital question must be addressed.

8. APPENDIX

In section 4.3 we commented that there is a critical value of the brane angular
momentum¢{., for which the effective potential has a local maximunvat = E.

A brane with this angular momentum can be in a circular orbit about the black
hole atr =r¢.

Mathematically, this situation arises whegy = E has repeated roots. If we
use the rescaled quantities anddet 72, then from (4.23) or (4.24) this is equiva-
lent to considering when the polynomip{x) = (x? — 1)(¢? + x3) — x(E — 3 +
x2)? = 0. Simplifying, it is left to show that there are repeated roots of the cubic
equation

. 1 .
& — 022 + 20— 1%x + 2 =0,

wherey = 2E. This occurs when

- 1
7= Ea[_y4 + 76y° + 282y% + 76y — 1+ +/(y + 1)2(y2 + 34y + 1)3].
The expression for the repeated ragt= 72 is too complicated to write down here
however.
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